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ABSTRACT

The equations describing a plasma in local thermodynamic
equilibrium are presented and applied to a conventional shock
tube. If conditions of local thermodynamic equilibrium exist,
these equations give the number densities of the atoms,
molecules, ions and electrons that make up the plasma.

For practical results an effective iteration scheme is

presented for the computer solution of such equations.




I. Introduction

One of the fundamental problems of astrophysics is the
determination of absolute absorption coefficients and oscillator
strengths of atomic and molecular systems. For all molecular
and all but the simplest of atomic systems we must rely on
the experimental determination of these values. Toward the
solution of many of these problems a shock tube may be used
successfully. One particular advantage of shock tubes is the
high temperature at which the experiment may be performed. The
most important advantage, however, is that shock tubes produce
a volume of gas that is usually in local thermodynamic equi-
librium (LTE), a fact allowing an experimenter to determine
more or less precisely the number of emitters or absorbers in
the line of sight. This report will exhibit those equations
describing the situation of thermodynamic equilibrium which
predict the equilibrium number densities of the various chemi-
cal species present. A practical method of solution will
be explained.

The equilibrium theory is valid for all practical ranges
of temperature and pressure, subject to certain steady state
and relaxation arguments. The relaxation time, in conjunction
with the specific design of the shock tube, will dictate the

range of thermodynamic parameters over which experiments may



be performed. Thus, when we are forced to limit our discussion
to specifics, we will be directing our attention to those con-
ditions found in the reflected shock produced in a conventional
tube in the laboratory. In such tubes, one has a low molecular
weight gas at high pressure separated by a diaphragm from a
high molecular weight inert gas at low pressure. Usually a
small percentage of the atom or molecule in question has been
mixed with the inert gas. When the diaphragm is broken, a
shock travels down through the low pressure gas and reflects
back from the end of the tube. The conditions behind this
reflected shock are steady over a few hundred microseconds and
all measurements are made in or through the gas behind the
reflected shock. The reader is referred to Gaydon and Hurle
(1963) for a more complete description of reflected shock
techniques. In short, we are addressing our primary attention
to a uniform volume of gas characterized by the following ranges
of parameters:

Delay after shock: 2 100 usec (1)

Temperature: 3500 - 7500°K (2)

Total particle density: 5 x 10°° - 10°°am™® (3)
At lower temperatures and densities, many molecular systems may
not have had time to relax within the allowed time. Higher

temperatures and densities are more or less limited by the




experimental technique. Finally, the particular method of
solution discussed in this paper becomes less efficient beyond
both the upper and lower limits of the above thermodynamic

parameters.

IT. Equilibrium Relations

Consider a uniform volume of gas in complete thermodynamic
equilibrium. We will make the assumption that the gas is an

jdeal one such that

p = NkT , (4)
where p is the pressure, N is the total number of particles per
unit volume, k is Boltzmann's constant, and T is the absolute
temperature (°K). The assumption of an ideal gas is quite
reasonable because of the restrictions imposed by relations
(2) and (3). It can be shown, for instance, that coulomb effects
on the pressure are negligible. We let the gas be composed of
various atomic and molecular species that may react chemically
with each other in equilibrium. Such interactions may involve
the simple dissociation-recombination of species A and B,

A+ B=AB.
Of course one may postulate more complicated chemical inter-
actions such as

AB + CD = AC + BD
or

A+ B+ C = ABC ,
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but these can ultimately be expressed in the forms of simple
dissociation-recombination reactions, viz.,

(aB) + (CD) == (ABCD) == (AC) + (BD)

(A + B) + C = (aBC) ,
In the identical framework we can consider ionization-recombina-
tion processes:

A% + e A,

Statistical mechanics (e.g., Fowler and Guggenheim, 1952)
provides the fundamental relations from which all chemical
equilibria may be calculated. For any species A and B (where
A or B may be an atom, molecule, ion or electron) in equilibrium
with their compound AB, the number densities n,, ng and Dan

of species A, B, and AB are related by

nanp Q9% (5)

Nan Qs

where QA is the partition function, or state sum, of species

A, etc. 1In all cases the partition function is simply a weighted
sum, over all discrete and continuous energy states, of the
probability of finding the molecule in each state (molecule is
used here in the general sense). It may be thought of as a
normalization factor for the ways of distributing the energy in
the states. Classical statistics, which apply to all particles

of present interest in normal ranges of temperature and pressure,




give the partition function as

0 = L gje /¥ (6)

all levels

where 9, is the statistical weight of level i, and Ei is the
energy of the ith level above the reference level. Equation
(6) is applicable to any molecule, but its detailed calculation
is in general prohibitively difficult. For any sort of prac-
tical application, the calculation of the partition function
must be broken down and simplified.

With the assumption of a perfect gas we may introduce an
immediate simplification to equation (6). As the individual
particles do not interact with each other, except for short-
term collisions, the internal energy of the molecule will be
essentially decoupled from the external, or kinetic energy of
the molecule. The partition function is then written

-E. N -E, /KT

external internal

Qext is sometimes called the translational partition function

=Q ., " Q. . (7)

and is readily evaluated from elementary quantum mechanics by
considering the classical problem of the particle in the box.

Details may be found in Morse (1964). The result is a familiar

3
ones Qext = < ”I}?(T > (8)




where M is the mass of the molecule, k is Boltzmann's constant,
and h is Planck's constant.

Except for the case of simple atoms, the evaluation of
Qint remains a difficulty. The standard procedure for non-
monatomic molecules is, first of all, to invoke the Born-
Oppenheimer approximation (1927), which allows one to neglect
the electrons when considering the remaining degrees of freedom
of the molecule. In other words, the Born-Oppenheimer approxi-

mation permits the separation of the molecular wave function,

y , as

¥ =9

nuclei

(m) - ¥ ¢, nn , (9)

elec
where 7 represents the coordinates of the two nuclei and (
represents electron coordinates.* The next approximation is
the assumption of the separability of the modes of the nuclei
such that

¥

(M = ¥(r,0,9) = ¥, (1) = ¥_ (6,0) . (10)

nuclei vib
This approximation requires treating a pure vibration and a
rigid rotation independently. In these approximations the
energy contributions of the various modes are simply additive:

Eint = Fvib ¥ Erot * Belec , (11)

* Note, however that V¥ is in fact determined primarily

nuclei

by the electronic structure.




and the internal partition function is the corresponding product:

=Q .. = Q

int ib [diatomic and poly- (12)

atomic molecules].

Toward higher temperatures the validity of equation (10) begins
to break down and the system is better treated as an anharmoni-
cally vibrating rotator (see Mayer and Mayer, 1940). For diatomic
molecules the rotational-vibrational part of the partition
function can be evaluated for the anharmonic oscillator (and if
necessary, for the non-rigid rotator) without the simplification
of equation (10); and a discussion of this is presented in the
Appendix. For many problems the simpler approximations are
adequate, and we continue the development from that point of
view with its extensions to polyatomic molecules.

The nuclear spins of the atoms comprising a molecule each
contribute a constant factor (anuc + 1) to the statistical
weight, and this same degeneracy is retained as the atoms form
a molecule, so long as the atoms are distinguishable (i.e., the
molecule is heteronuclear). For such cases, these contributions
obviously cancel in equation (5), and they need not be carried
through the analysis for evaluation. However, for molecules
containing indistinguishable component atoms the nuclear spins
Play an additional, more complicated role that restricts the

rotational eigenvalues. This in turn is manifested in Qrot’
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the rotational partition function (see Fowler and Guggenheim,
1952).

The rotational partition function,

-E./kT
Qrot = Z gie 1 (13)
rot. levels

can be evaluated with the assumption that the molecule is a
rigid rotator (see Pauling and Wilson., 1935). For a hetero-

nuclear diatomic molecule the energy eigenvalues are given by

~ h° [diatomic,
E, =43 (T + L) 3n5urz heteronuclear] (14)

where J is the rotational quantum number, and r, is the equili-
brium separation between the two nuclei, evaluated for the lowest

vibrational level of the ground electronic state. Here

L= MA ) MB (15)
MA + MB

is the reduced mass, MA and MB being the masses of the com-

ponent nuclei. Each level, E has a statistical weight (23 + 1).

J’
We can immediately generalize equation (14) to include polyatomic

linear molecules by identifying uxz with the transverse moment

of inertia, IA' Then equation (13) leads to

-3(3 + 1) h*/er°T kT [linear, (16)

rot heteronuclear]

@©
Q = E:(ZJ + 1) e
J=0
For shock tube temperatures a direct summation is unreasonable
as well as unnecessary, and equation (16) may instead be

evaluated by an asymptotic series (see Herzberg, 1945) or by
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simply replacing the sum by an integral over J. In either case
the result is the same and is equal to the result one obtains
from classical statistics:

BWZIAkT (linear,

Qrot = —F heteronuclear]

(17)

For a diatomic homonuclear molecule the summation in equation .
(16) must omit every other J-value because of symmetry require-
ments; and while the details of which J-values are to be omitted
depend on the value of the nuclear spin, the difference is
purely an academic one at high temperatures, with the result

. We can thus

in either case being a factor of two in Qrot

generalize equation (17) to apply to all linear molecules:

812 IAKT linear
Qrot = ._.__2__. P) L ar ] (18)
oh

where o, the symmetry factor, is the number of indistinguishable
orientations of the molecule. Unfortunately, attempts to cal-

culate the Qro for non-linear polyatomic molecules in the

t
same manner, as developed in equations (14) through (18), are
not successful, because there are no explicit formulae for the
energy levels (Herzberg, 1945). However, because of the high

shock tube temperature, we are well justified in simply adopting

the classical result (see Mayer and Mayer, 1940):

szvIAIB c (x1)® , [non-linear] (19)

_ ler?®
Qot = on°
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are the principal moments of inertia, and

I d
where IA’ B and I

C

0 is the symmetry number defined above. The moments of inertia
are deduced from spectroscopic data.
The vibrational partition function

Z -E;/kT
g e

vib. levels

Qvib = (20)
can be easily evaluated if we assume the molecules to behave
as a simple harmonic oscillator. Again, the problem is one
from elementary quantum mechanics. The energy eigenvalues are
given by

E ,=hcw (v+8) v=0,1,2...., (21)
where c is the velocity of light and @ is the fundamental
vibration frequency of the molecule in its ground electronic
state. W is obtained experimentally from spectroscopic data.
Since the statistical weight of all levels is unity, the
vibrational partition function for diatomic molecules is

given by

=§ euhcwv/kT = (1 - e_hcw/kT >_1

Qb L [diatomic] (22)

Note that in writing the vibrational energy in this fashion we
have arbitrarily set the zero energy of the molecule at the
lowest vibrational level rather than the minimum of the
vibrational potential well. Equation (22) applies only to

diatomic molecules. For a polyatomic molecule, the calculation
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of the vibrational partition function is a more complicated
process. The common procedure is to assume that each mode of
vibration is decoupled from the other, and that therefore the
total partition function is given by the products of individual

vibrational partition functions. This is expressed generally as

3n-x -1
-hcw; /kT
= - e 1 ) , [polyatomic] (23)

where n is the number of atoms in the molecule, and x is 5 for
linear molecules and 6 for non-linear molecules. Mathematically,
equation (22) can be considered a special case of (23).

The electronic partition function

"Ei/kT
= Lgse (24)
elec. levels

Qelec

is evaluated by considering the levels combined in spectroscopic
terms. The term energies are obtained experimentally and are
completely similar to atomic terms, with the convention that

the term energy is evaluated for the v = 0 vibrational level.
The evaluation of the statistical weights, the gi's, is, however,
not analogous to the (2s + 1) (2L + 1) factor appropriate to
atoms. The reason for this is that orbital angular momentum

of multi-atomic molecules is primarily a rotational phenomenon.
The correct electronic statistical weight of a molecular term is

g=(2s +1)(2 - § (25)

o) ¢



12

where (2S + 1) is the normal spin multiplicity, & represents
the Dirac delta function, and A is the quantum number of the
angular momentum of the electrons about the internuclear axis
(e.g., A =0 for T terms, A = 1 for I terms, etc.). This latter
contribution to the degeneracy is a manifestation of the so-
called A-doubling (see Herzberg, 1950). From a computational
viewpoint there is no difficulty including higher terms, but in
most practical cases only the ground term contributes signifi-
cantly to the partition function. Should a particular molecule
(MgO, for instance) have extremely low-lying electronic levels
that contribute to the sum in equation (24), then the question
of the validity of the Born-Oppenheimer approximation must
be examined.

For atoms and their ions there are no rotational and
vibrational degrees of freedom, and the internal partition

function is the usual sum over all electronic energy levels:

3 2 1 -Ei/kT ]
= all( I, 4+ ) e [atoms (26)

levels

Qint = Qelec

Particularly in the shock tube, this sum will not be infinite
because of plasma effects that lower the ionization potential,
and there is no difficulty in the evaluation of equation (26).
For practical purposes Drawin and Felenbok (1965) have computed

elaborate tables of the internal partition function of atoms
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and their ions.

In the Saha equation [the ionization counterpart of the
chemical equilibrium relation (5)] the partition function of
the free electron enters; this always takes the value 2 to
account for the two possible spin orientations.

In all the foregoing developments we have referenced the
é rbitrary energy scale to the ground level of the atom or
molecule. The most important point of the equilibrium relation
(5) is that the energy scales of components A and B and their
compound AB must be referenced to the same common energy. If
we arbitrarily set the zero energy at the ground level of the
separated components, then the ground state of the compound is
at _DAB’ the dissociation energy* of the molecule (or -IA, the
ionization energy* of the neutral), and to the energies in the
partition function (6) of the compound there must be added the
appropriate constant.

Summarizing the foregoing, we obtain the following equation:
. -I./kT
Qint,a+ ~ 2 . ¢ A (27)

n + n < 2wmekT
Qint ,a

where me is the mass of the electron; A+ refers to the ion of

species A; Qint A refers to the internal partition function
b

appropriate to species A (equations 12 - 26), etc.; and

* Both IA and DAB may be subject to plasma effects that cause

an effective lowering of the theoretical wvalues.
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IA is the ionization potential of species A. Here species A

is taken in the general sense and can be either a molecule or

a single atom. Equation (27) is known as the Saha equation.
We may also write

Q. - . -DAB/kT (28)
non, _ CZWh%T )% 1nLg int,B

nAB int ,AB

0

where | is the reduced mass defined by equation {14) and DAB
is the dissociation energy of the A, B, AB reaction. Again,
A and B themselves can be either molecules or single atoms.
There exist three additional types of equations that will

completely determine the equilibrium concentrations of the
various species of the plasma. Charge neutrality requires
that

n =Zn s (29)

e AA+

where we include all appropriate atomic and molecular ions.

Conservation of atomic nuclei requires that

) (30)

a a a+

= ZV
N n +n + - Aq (nA + nA+

where a, alone, refers to a single atomic species (not a molecule)
and Na is the total density of nuclei of type a (occurring in
atoms, ions and molecules). The summation is over all molecules
and molecular ions that contain atom a, with the coefficient

VA o the number of atoms o in molecule A. The necessary
2
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normalization is given by the perfect gas law, following the

basic assumption of equation (4):

_ P
ne + z;(nA + nA+) = Ty s (31)

where the summation is over all molecules and atoms, and p
and T are the measured pressure and temperature. Absolute
values of the densities of atomic nuclei, Na’ are then obtained
from equation (31) once the relative nuclear densities are
given as part of the problem specification.

The foregoing set of equations, (27) through (31), are
sufficient for problem solution. However, where ionization
of diatomic and polyatomic molecules is considered, the problem
is generally overdetermined because there are at least three

energy-equivalent ways of forming molecular ions:

1) A+B-2AB; AB - e - ABY |

2) A-e-at; at+s-ast ,

3) B-e—=B"; a+38" -ast .
As a convention, we must select one path; sequence (1) is usually
the least ambiguous. Similar problems enter with polyatomic
molecules that can dissect themselves several different ways.
Again, we must specify only one such possibility.

The solution of equations (27) through (31) is one of

iteration, and one such method will be discussed in Section

IV, below.
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I1II. The Validity of LTE

A full discussion of the validity of the assumption of
LTE is beyond the scope of this report; to discuss this matter
adequately here would subvert the purpose. In fact, an adequate
discussion would lead from a small report to a large treatise.
However, we will briefly attempt to summarize the situation.

The great usefulness of the shock tube lies in the belief
that LTE holds, and there is considerable evidence supporting
this assumption. The readily observed fact that in a wide
variety of cases there exists a period (usually a few hundred
usec) during which a steady temperature and pressure can be
measured certainly indicates that a type of equilibrium exists.
In recent years a number of experiments have been performed
which, for the most part, support the assumption of LTE; the
reader is referred to Greene and Toennies (1964) and Losev
and Osipov (1961) for a more complete discussion and excellent
bibliographies. Particular attention is called to the recent
work of Parkinson and Reeves (1964) and of Garton, Parkinson
and Reeves (1965), which indicates LTE among the bound and free
electronic levels of Ca I and Ca II.

For a theoretical discussion the reader is referred to
the work of Griem (1964) and to the paper of Losev and Osipov

(1961). The former is particuiarly enlightening and includes
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a discussion of both steady state and relaxation problems. It
is of interest to note that, while generally favorable, the
theories do not always predict LTE in the shock tube.

Finally, we must add a general warning: situations may
exist in which complete LTE does not obtain. Particular diffi-
culties can arise with powered solids, with first ionization
species, and with strongly bound molecules. The first of these,
powdered solids, can suffer severely from inhomogeneities and
relaxation difficulties. The second, ionized species, may not
be in equilibrium because of relaxation problems with the
ionization equilibrium. Lastly, molecules can constitute a
very real equilibrium problem because many (particularly those
with a high dissociation energy) are known to be very slow to
dissociate. Greene and Toennies (1964) reproduce experimental
results that dictate this conclusion and indicate that many
molecules will not have relaxed dissociatively at the lower
temperatures and densities given in relations (2) and (3);
and molecules like N, and CO will prove to be prbblems at

even higher temperatures and densities.

IV. The Method of Solution

Where equilibrium prevails, equations (27) through (31)

constitute the problem to be solved. We will rewrite these
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equations for convenience. Equations (27) and (28) yield

n - n
+ =S
A - e A (32)
A
n. °n
A - B = KAB (33)
AB .

Here again, A and B can refer to either atoms or molecules.
To keep the problem properly defined we must have only one
relation (32) for each molecular ion A+, and only one relation

(33) for each compound AB. Egquations (29) through (31) can

be rephrased with

n_ = Z:nA+ , (34)

where the summation is over all atoms and molecules, and
S z Np , Saa

Ny =N, -nM '[—q+ VAa(K_+T> > (39)
where a refers to atoms only. The particular arrangement of
this equation is discussed below. The solution is normalized
by the constraining equations

N =R E;N (36)

o] o, @

and

2ne + Z:nA= c . (37)

The specification of vA,a’ c, Ra’ SA and KAB defines the problem:

the small n's constitute the unknowns.
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These equations can be solved by a systematic iteration
procedure. A number of schemes will suffice, but we have used
one that is particularly suitable for shock tube problems out-
lined by relations (2) and (3). Under these conditions most
of the atomic nuclei present will usually appear as free, neutral
atoms rather than as ions or molecular components. The pro-
cedure, then, is to iterate on the number densities of the free,
neutral atoms (na in the present notation). The scheme is as
follows:

1) An initial guess is made for n,- Using equations (32)

for atoms only

A'max (38)

n, = (JNAS )

is determined, where N

A’ as a first guess, assumes only neutral

atoms exist.

2) An initial guess is made for each na. First, with na
arbitrary, all equations (32) and (33) are investigated, and
a label is associated with n, denoting whether this atom tends
more toward ionization or dissociation. If it is ionization-

inclined, an initial guess is made for n:
n

a
a 1+ sa/ne) (39)

If molecule-inclined, the initial guess is made as

n = (KaBNa)% s (40)
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where af is the dominating molecule containing atom a. nB
is initialized similarly. The right hand sides of equations
(35) should be positive; if not, small adjustments in the n,
are made until this is so.

3) Densities of ions and molecules are computed according
to equations (32) and (33), and a new trial electron density is
computed according to (34).

4) and n ._,s the maximum and minimum wvalues
a(min)

na(max)
for the atom densities are originally set at Na and n,
respectively.

5) The iteration proceeds on the right hand side of equation
(35) , as constrained by equations (36) and (37). As improved

values of the na are calculated, the n are

a (max) and ncz(min)
brought closer together until specified accuracy criteria are
met. New trial values of na are calculated in the procedure by
taking geometric means of the extreme values.* Number densities
of ions and molecules are calculated as by-products. Electron
densities from equations (32) and (34) are successively improved
by taking geometric means.
This iteration scheme has been found to work well for a

large number of shock tube problems. One percent accuracies

are often obtained in three or four iterations: one-tenth

* This procedure was suggested by G. Newsom.
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percent accuracies in six Or seven iterations. However, the
scheme will not converge directly for problems with a high degree
of ionization (some SA large) or for problems with considerable
molecular formation (some K.AB small) , and as the iteration pro-
ceeds, checks on the convergence must be made, with the limits
na(min) or na(max) adjusted appropriately. If the problem is
such that this indirect path to convergence is necessary, it

can take ten and twenty iterations to converge to one percent

and one-tenth percent accuracy, respectively, for stubborn
many-component problems. Thus, for unusually cool or unusually
hot plasmas the iteration is less efficient, and similar state-
ments apply to unusually dense or rare plasmas. However, while
the efficiency will be somewhat poor, this scheme can be used
successfully with most any laboratory or astrophysical plasmé.

For example, stellar atmosphere equilibrium can easily be treated,
with certain limits placed on the number of possible reacting
components. For extensive problems of this type it is usually

advantageous to use more elaborate schemes such as the Newton-

Raphson method (see Dolan, 1965).

V. Summary

We have presented the equations to be solved in the deter-

mination of the number densities of atoms, electrons, ions and
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molecules in a shock tube, and a method of solution. The
brief discussion given here emphasizes the applicability of
the equilibrium physics described by these equations in a wide
variety of problems, yet points to possible deviations from
equilibrium--particularly with dissociating molecules.
Finally, the physics and mathematics discussed in this
report have been programmed in FORTRAN II for solution on an
IBM 7094 computer. The program is known as EXCIT4, and a copy
of the source deck with a set of operating instructions can
be obtained from this laboratory. The program has the option
of calculating the internal partition functions as discussed
in this report, or of interpolating these from tables. The
only restriction limiting its immediate use by others is that
the FORTRAN includes some half-dozen non-standard features

found on the Smithsonian Astrophysical Observatory FORTRAN

Monitor System.

This work has been supported in part by NASA (Grant NsG-438)

and by the Office of Naval Research (Contract NONr-1866 (48) ).
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Appendix

The Validity of the Uncoupled Approximations

In the evaluation of internal partition functions of
diatomic and polyatomic molecules in Section II, we have
simplified the calculation by uncoupling the various modes
from each other (cf. equations 11 and 12). As stated, this
approximation gets worse at high temperatures. Here we
briefly examine this effect.

We will assume the Born-Oppenheimer approximatiom holds,
or, equivalently, that any important excited electronic states
have rotational or vibrational constants and electronic degen-
eracies identical to those of the ground electron state——
generally a reasonable assumption. The problem is essentially
that of analyzing the extent to which the harmonic oscillator
approximates the anharmonic {(Morse) oscillator.* For practical
reasons we must restrict this discussion to diatomic molecules.

We examine three common molecules having rather different
molecular constants: H;, OH and CO. The behavior of these is
indicative of the behavior of other molecules, although certain
cases deserve special attention. With the molecular constants

in Herzberg (1950), the coupled and uncoupled calculations have

* It can be shown that any effects due to non-rigid rotation

are entirely negligible.



been carried ocut and are displayed in Table 1. The comparisons
illustrate that for the lower temperatures and the heavier
molecules the harmonic oscillator approximation is generally
adequate for the calculation of the partition functions. How-
ever, for lighter molecules (particularly H;) and for higher
temperatures, the approximations deteriorate. Whether or not
one uses the harmonic approximation depends on a number of
practical questions, since such a calculation is a simple one
and the anharmonic one is a sum of several exponentials.¥
Attempts to calculate the partition function more accurately
than this latter approximation usually encounter difficulties
because of inadequacies in theory as well as in experimentally

determined molecular data.

* For a few of the most common diatomic molecules such cal-
culations have been made by J. B. Tatum, to be published shortly

in Volume 12 of the Pub. Dom. Ap. Obs. (1966).




TABLE 1

4000°K 5000°K 6000°K
a O armonic 29.5 40.8 53.9
2
QMorse 31.0 43.8 59.5
OH Qharmonlc 203 285 381
Qvorse 214 305 418
co Qharmonic 2667 3891 5345
QMorse 2734 4018 5564

The rotational-vibrational partition function of Hz , OH
and CO. The harmonic oscillator approximation is given by

kT hcw
Qharmonic = oB.hc ) ( 1- ?XP[ e ] )

The anharmonic oscillator approximation is given by

e 1
2WeXg 2
QMorse = exp[ gﬁE'C -t xe)] Z;O chc ( B -a, (v-&))

. exp[- %% {we(v + ) - wexe(v + ﬁ)a} ].

Notation and molecular constants are taken from Herzberg (1950).
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